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Abstract

Information models are a critical tool for U.S. intelligence agencies to allow their

customers to quickly and accurately comprehend their products. The Knowledge Pre-

positioning System (KPS) is the standard repository for information models at the

National Air and Space Intelligence Center (NASIC). The current approach used

by NASIC to build a KPS information model is laborious and costly. Intelligence

analysts design an information model using a manual, butcher-paper-based process.

The output of their work is then entered into KPS by either a single NASIC KPS

“database modeler” or a contractor (at a cost of roughly $100K to the organization).

This thesis proposes a tool-supported approach to allow intelligence analysts

to create KPS information models with almost no database modeler or contractor

support. Our approach allows analysts to express an information model as a concept

map, an analyst-understandable model of an intelligence domain. An existing tool,

CmapTools [6], supports the analyst-in-the-loop process of concept map creation. A

completed concept map is automatically converted into KPS by a prototype tool,

called Cmap Conversion for KPS, created as part of this work. We restrict, to a

reasonable degree, how analysts express concept maps within CmapTools to ensure

that automatic conversion into KPS is possible.

We validated our approach using a representative NASIC-provided KPS infor-

mation model: performance of fixed-wing aircraft. Using our tools, a new information

model was constructed in 4 hours and 20 minutes, a 89% improvement over the 40

hours estimated by NASIC to complete the same task using their existing approach.

For this representative information model, NASIC estimates our approach would save

them roughly $200K.
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Using Concept Maps to More Efficiently

Create Intelligence Information Models

I. Introduction

1.1 The Problem

Information models are a critical tool for U.S. intelligence agencies to allow their

customers to quickly and accurately comprehend their products. The Knowledge Pre-

positioning System (KPS) is the standard repository for information models at the

National Air and Space Intelligence Center (NASIC). Information models are a proven

technique to pass ideas between individuals of different specialties [4]. An information

model is a common way to express data. It can be used to bridge the gap between

any number of differing vocabularies as long as the elements of the model are defined

in such a way as to be clear to each concerned party what the model represents.

At NASIC, communication is required between intelligence analysts and database

modelers to create a KPS information model. When describing a set of data, intelli-

gence analysts speak in terms of products, background information and conclusions;

database modelers use terms such as entities, attributes and relationships. These sep-

arate specialized vocabularies can cause unneeded and costly delays as the individuals

must pass information between one another in order to accurate depict the analyst’s

knowledge as a KPS information model.

To help solve this problem, an approach is needed to ensure that the relevant

information is not only captured by the analyst, but disseminated and stored in such

a way that it is easily accessible when needed and can be reconstructed to provide

an accurate representation of the intelligence product. Creating this approach is the

focus of our work and is motivated by NASIC’s need to empower intelligence analysts

with the ability to create KPS information models without a KPS-savvy database

modeler being a bottleneck. From the larger perspective, the problems with their
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current approach to KPS information map creation are becoming a hindrance to the

timely execution of NASIC’s mission.

1.2 This Thesis

This thesis proposes a tool-supported approach for the creation of information

models by intelligence analysts that can be automatically translated into a form that

can be directly imported into KPS. This approach will create a type of information

model called a concept map using an existing tool called CmapTools created by the

Institute for Human and Machine Cognition (IHMC). The concept maps will then be

converted into files usable by the NASIC data base modeler to populate the intelli-

gence database using a tool we developed as part of our work named CMap Conversion

for KPS. A case study using data provided by NASIC indicates that our approach has

the potential to save both time and money and can aid NASIC in providing timely,

accurate intelligence to the Department of Defense and our allies.

1.3 KPS Information Model Creation Today

This section briefly describes the current approach NASIC uses to create in-

formation models. An activity diagram for this approach can be seen in Figure 1.1.

The process begins when an intelligence analyst recognizes information that needs to

be represented in an information model. At this point the intelligence analyst must

decide whether or not the information is time sensitive. If it is not, an appointment

has to be made with the database modeler. It may take up to two weeks for the

database modeler to have the opportunity to meet with the intelligence analyst.

If the intelligence analyst decides the information is time sensitive, they must

contact a database designer; generally a contractor who has the ability to write to the

database. This adds a cost of roughly $100K to the process. The database modeler,

possibly a contractor, will then sit down with the intelligence analyst and the two

work together to formulate an information model that can be parsed into acceptable

entities for use in the database. After the information model has been created, the

2



Intelligence analyst decides knowledge is of use

Analyst explains product information to database modeler Analyst explains product information to contractor

Database modeler creates information model Contractor creates information model

Database modeler manually creates text files Contractor manually creates text files

Database modeler runs script importing text files to Oracle

Intel analyst decides to wait on database modeler Intel analyst cannot wait on database modeler

Intel analyst 

not satisfied 
Intel analyst 

satisfied

Intel analyst

not satisfiedIntel analyst 

satisfied

Figure 1.1: Activity diagram of NASIC’s current approach.
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database modeler then creates verbose text files of the information so that existing

scripts can be used to read in the data and import it into NASIC’s database.

1.3.1 Problems. There are several problems with the current approach.

First, intelligence analysts may not have collected the breadth of information re-

quired by KPS. When the intelligence analyst sits down with the database modeler to

create an information model, the intelligence analyst comes to realize that a complete

information model requires a great deal of facts and these particulars are not at the

forefront of the intelligence analysts mind.

Second, intelligence analysts do not understand Entity Relationship Diagram

(ERD) [9] notation or semantics used by KPS. For example, an intelligence analyst

knows that a report about a fixed wing aircraft needs to contain information about the

combat capabilities of the aircraft. However, the database modeler has to explain that

both the aircraft and its capabilities are represented as entities in the database due to

the large amount of information that can be captured about the combat capability.

At times, this confusion about ERD requirements causes “bad” information models

to be uploaded to the database. When these models are identified, additional time

is needed for the intelligence analyst and database modeler to confer and correct the

mistakes.

Third, the process used by intelligence analysts to gather their requirements is

an ad-hoc, often butcher-paper-based, process. Therefore, the process of information

model creation can be time intensive as the intelligence analysts attempt to com-

municate and, often times, formulate their requirements to the database modeler.

According to Ms. Sharon Cain, the sole NASIC database modeler, it currently takes

approximately 40 hours to manually create an information model.

Fourth, the availability of only a single NASIC database modeler can cause time

delays. In effect, the database modeler becomes a “bottleneck” in the process. Making

the situation worse, KPS information map creation is not the only task assigned to the

NASIC database modeler—other duties can and do preempt work on KPS information

4



models. Therefore, instead of an intelligence analyst being able to put their ideas into

production as soon as they are organized, a waiting game has to be played until

time can be scheduled with the database modeler. This can cause delays of up to a

month between the intelligence analysts conception of the intelligence product and its

inclusion into the database. These setbacks can drastically reduce the relevance of the

intelligence information. Due to these scheduling difficulties, in lieu of the database

modeler, a contractor is often used to co-create the information models adding an

estimated $100K to the cost of model creation.

Fifth, the database modeler must translate the information models into a very

exacting text file format before the information model can be loaded into KPS. KPS

currently relies on basic scripts to parse text files to create the necessary database

entries. These text files are very difficult to read and therefore, syntactical mistakes

are common during manual creation.

Finally, with the intelligence analyst’s limited understanding of the ERD, mis-

takes in the newly created models are often not uncovered until after the information

model is put into production, sometimes taking weeks to be discovered. This creates

the possibility of mission planning based on incorrect intelligence. When mistakes are

finally noted, the scheduling conflicts discussed above once again come into play.

Overall, NASIC estimates that the creation cost of each KPS information model

is roughly $350K.

1.4 Improving KPS Information Model Creation

A major portion of the delay during information model creation is the nonex-

istent mapping between analyst ideas and the ERD models needed for the database.

If a process existed to more precisely capture the intelligence analysts knowledge in

a manner understandable to the analyst, it would ease the database modelers’ efforts

to map the products to their ERD counterparts.

5



Intelligence analyst decides knowledge is of use

Intelligence analyst creates concept map

Database modeler uses CMap Conversion for KPS tool

Database modeler imports text files into KPS

Figure 1.2: Our proposed information model creation approach.

Intelligence analysts have the choice of waiting behind the bottleneck of the

database modeler or paying the cost of a contractor. Allowing them the opportunity

to create the information model themselves removes both of these obstacles.

Manually creating obtuse text files adds unnecessary cost, time delays and

database modeler frustration. The original intent behind the text files was to make

them easy for a script to parse; not for user readability. A tool that could auto-

matically create these files from the information model would save both time and

money.

We propose that properly preparing intelligence data for inclusion into the KPS

can be streamlined via the use of an approach we call CMap Supported Information

Modeling (CSIM) using the steps in Figure 1.2 and described further below.
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<concept id="1165336643244_205225960_469"

label="Climb Rate"

short-comment="The maximum sustainable rate of climb at the

specified takeoff total gross weight and

altitude at maximum power."

long-comment="" />

Figure 1.3: (top) An example concept map that describes the Altitude concept.
(bottom) The XML representation of the Climb Rate concept—Climb Rate is circled
in the Altitude concept map.
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1.4.1 Intelligence Analyst Decides Knowledge is of use. In essence, the

intelligence analyst deems there is a use for a new intelligence product. This decision

starts the process of creating a new KPS information model.

1.4.2 Intelligence Analyst Creates a Concept Map. The tool we have chosen

for intelligence analysts to create concept maps is CmapTools [6]. This application was

developed by the Institute for Human and Machine Cognition (IHMC). It was selected

for use in our proposed approach by NASIC due to its cost—it is freely available—and

ease of use. Additionally, NASIC has close ties with IHMC, which will allow NASIC

to influence future builds of the CmapTools software.

Instead of the current ad hoc process, an intelligence analyst will use CmapTools

to create an information model of their intelligence data. This information model,

called a concept map, will be a graphical representation of the intelligence analyst’s

intelligence product. In a concept map, boxes represent the various concepts of the

map. Concepts are connected with labeled lines which are the linking phrases of the

map. An example concept map for the Altitude concept is shown in Figure 1.3. The

Climb Rate concept, which is circled in Figure 1.3, has its XML representation shown

at the bottom of the figure.

When the analyst is satisfied that the concept map accurately depicts the rele-

vant intelligence data, CmapTools can export the concept map as an XML document.

CmapTools can use these files to reconstruct concept maps; for example, an employee

in Dayton creates a concept map and places the XML in a company server. This

XML is then accessed by an employee in Seoul and CmapTools creates an exact rep-

resentation of the original concept map from the XML. However, for use in our work,

the XML file representation of a concept map will be used to create the text files

required by KPS.

1.4.3 Database modeler Uses CMap Conversion for KPS tool. The database

modeler will use the CMap Conversion for KPS tool (developed as part of this work)

8



to convert the XML concept map and create the necessary text files to upload the

data into KPS.

1.4.4 Database modeler Imports Text Files into KPS. The output from the

CMap Conversion for KPS tool is imported into KPS using pre-existing scripts on the

NASIC network. At this point the new information model is available for use in KPS.

Our proposed tool-supported approach partially solves the problems of the cur-

rent approach. First, the use of concept maps allows analysts to systematically define

their desired intelligence product. In order to properly represent their knowledge in

a concept map, intelligence analysts must think critically about the information they

are trying to communicate. They must compartmentalize their understanding into

main ideas and attributes that describe those ideas. We acknowledge that this will

take more time up front than the current approach, however, taking this additional

time to create the concept maps will also give the intelligence analysts a feeling of

ownership over the ideas they contain. This point of view will foster a desire in the

intelligence analysts to make their concept maps as complete as possible and this, in

turn, will result in better intelligence products.

Second, our proposed approach removes the database modeler scheduling con-

flicts noted previously. Concept maps can be created when the intelligence analyst is

ready; not when the database modeler is available.

Third, the need for a contractor to accelerate the process is removed. Instead

of the many hours required to manually create an butcher-paper-based information

model into the text files required by KPS, it will take the database modeler only

seconds to use our CMap Conversion for KPS tool to convert the concept map into the

necessary text files.

Fourth, our proposed approach will result in fewer mistakes. No tool can be

mistake free, however, as intelligence analysts grow to better understand concept

maps and the process of creating them, their products will better reflect the ERD

9



concepts behind them ensuring that the intelligence that goes out in production will

accurately represent the knowledge of the intelligence analyst.

Fifth, much of the ambiguity of the current approach is removed. Since our

CMap Conversion for KPS tool is used to convert the concept map into a KPS infor-

mation model. To allow this automated conversion, we mandate the use of common

keywords to represent particular concepts. This ensures that the intent of the intelli-

gence analyst is accurately communicated in the resulting KPS information model.

Finally, changes to the information models are simplified. With no scheduling

difficulties to slow the process down, a change can be made with very little cost. A

few minutes to make the change on the original concept map and export the XML

document is all it takes. The updated data will be waiting and ready when the

database modeler next pushes data to KPS.

1.5 Validation

We validated our claim that our proposed approach is an improvement upon

the current approach using a data set provided by NASIC. Our approach reduced

the total time required to build an information model and prepare the text files for

import to the database 89% percent from 40 hours to 4. Additionally, by removing

the need for a contractor, we were able to significantly lower the cost for creation of

the information model from $350K to less than $150K according to NASIC estimates.

1.6 Outline

The remainder of this document is organized as follows:

• Chapter II, “Definitions and Prior Work,” provides relevant definitions to our

work and details our NASIC’s prior attempts to solve this problem.

• Chapter III, “Tool Use,” describes how to use tools to create a concept map

and automatically convert it into a KPS information model.

10



• Chapter IV, “Tool Engineering,” describes the design and implementation of

the CMap Conversion for KPS tool.

• Chapter V, “Validation,” describes a case study we performed on a data set

received from NASIC using our approach. This chapter discusses the strengths

and weaknesses observed during this case study.

• Chapter VI, “Conclusion,” summarizes our results and covers possible future

work.

11



II. Definitions and Prior Work

This chapter defines key terms and discusses previous attempts by the National

Air and Space Intelligence Center (NASIC) to improve their current approach

to information model creation for KPS.

2.1 Definitions

In this section we will define all key terms and ideas used in both the formation

and completion of this work.

2.1.1 Information Models. An information model is an organizational frame-

work that is used to categorize information resources. Information models are used

extensively today by both military and civilian companies as a way to pass informa-

tion easily and succinctly between employees of varying specialties. Simply put, an

information model is a common way to represent data so that it can be understood

and disbursed in such a way as to ensure that useful information can have the widest

possible dissemination. Information models are a critical tool for U.S. intelligence

agencies to allow their customers to quickly and accurately comprehend their prod-

ucts. However, finding information models that can be understood by all levels of the

organization is tricky.

In [4], Kostur speaks to these struggles. She states, “many authors struggle with

modeling their content; they have difficulty describing their structure semantically,

they have difficulty visualizing structure within and across information products, and

they have difficulty understanding the technology well enough to know what type of

information to include in the models.”

She continues to discuss the problems customers have in finding the content that

they need and the rising costs of content creation. These problems can be resolved

by correct use of information modeling. Concept mapping, discussed below, is an

example of this idea.

12



Figure 2.1: A simple concept map of the relationship: “sky is blue.”

2.1.2 Concept Maps. Introduced by Novak and Gowin [7], the concept map

is a graphical notation that enables knowledge expression in easily understood forms.

A concept map is comprised of two separate yet interconnected entities; concepts and

the relationships between pairs of concepts, called links. The concepts are referenced

as nouns, with the relationships usually consisting of verbs, forming propositions or

phrases for each pair of concepts [2]. A very simple concept map, shown in Figure 2.1,

would consist of two concept nodes, such as “sky” and “blue.” These would then be

connected by a directed arc representing the relationship “is.” The entire map would

then represent the fact that the “sky is blue.”

Another characteristic of concept maps is that concepts are represented in a

hierarchical fashion with the most inclusive concepts at the top of the map and more

specific concepts arranged hierarchically below [5]. This makes concept maps ideal

to describe a particular intelligence product. The product can be represented as the

root of the map. It can then be fully described by as many “child” nodes as needed to

capture the necessary details. This flexibility allows a concept map to be as inclusive

or exclusive as the creator of the map desires.

Concept maps are able to use cross-links that define relationships between differ-

ent domains of the concept map [5]. This capability allows several different products

to be described on the same concept map detailing their relationships to one another.

The visual nature of concept maps and their use of simple words or phrases to de-

scribe ideas make them an easy notation for intelligence analysts to learn. When ana-
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lysts realize that their intelligence products can be generalized to one all-encompassing

thought, they can then detail their desired product via related “child” concepts.

2.1.3 CmapTools. The CmapTools software is an application created and

maintained by IHMC. NASIC has close ties with the IHMC and, after mentioning

their prior unsuccessful attempts to create functional information models, IHMC in-

troduced them to the CmapTools application. The following characteristics of Cmap-

Tools [3] make it attractive as an information model creation tool:

• Easy to learn: The process of creating a concept map with CmapTools is very

intuitive and an experienced computer user will have no problems creating new

concept maps with little or no training. However, CmapTools capability goes far

beyond what we made use of in the CSIM approach giving us a large capacity

for upgrading the approach at a later date.

• Collaboration and sharing: The CmapTools application allows for concept maps to

be shared and synchronously modified. This capability allows the information

models to encompass a greater pool of employee knowledge as many different

users can collaborate on a singe concept map.

• NASIC can influence tool evolution: Due to NASIC’s close working relationship

with the IHMC, the users of the CmapTools application will be able to speak

directly with the designers of the tool. As such, they will be able to influence

modifications and add-ons to the software as needed.

• Cost: The CmapTools software is a freely available software package that can be

downloaded from the Internet.

• XML support: As we have discussed, CmapTools has the ability to store a concept

map as XML. This capability enables our automatic conversion of the concept

map into KPS data files.

2.1.4 XML. The Extensible Markup Language (XML) is a general-purpose

markup language used to create special purpose markup languages, which are capable
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of describing data in any way in which the author designs. More simply, XML is a

customizable language used to represent data. CmapTools includes a utility that will

export the Concept Maps to a version of XML the creators of CmapTools call Concept

Mapping Extensible Language (CXL). The CXL language was designed specifically for

concept maps created with CmapTools. It describes all the layout and style definitions

as well as any resource links (images, URLs, other concept maps, etc.) that are

included in the concept map. As CXL is a stylized version of XML and our work does

not use any other versions of XML, any mention of XML can be assumed to be CXL

for the remainder of this document.

2.1.5 Systematic Architecture for Virtual Analytic Net-centric Threat Informa-

tion (SAVANT). To understand NASIC’s desire for the migration of intelligence

information into an information model, it is necessary to understand the steps they

have taken to create a workspace environment conducive to correctly catalog and

disburse intelligence information. To this end, NASIC created the Systematic Ar-

chitecture for Virtual Analytic Net-centric Threat Information (SAVANT) program.

This program was developed by NASIC in 2003 to provide for 21st century trans-

formation and modernization to analyze, predict, capture, convey and disseminate

intelligence information. Goals of the SAVANT program were:

• Position, catalog and access all NASIC information.

• Improve integration across mission areas.

• Provide access to information at appropriate security level on demand

• Improve methods to capture and articulate threat information.

• Reduce costs through a standardized digital production approach.

• Enable improved “Machine-to-Machine” communication capability.

• Support various Intelligence Community initiatives.
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The SAVANT program encompasses various applications, however, the portion

of SAVANT that we are most concerned with is the Knowledge Pre-positioning System

(KPS).

KPS provides a collection of tools and services for analysts to capture analysis

data and organize knowledge in a structured manner. Unfortunately, KPS fell short

of its intended goal and it is in this area that our approach seeks to better the organi-

zation. The current approach under KPS is very generalized in its approach and, as

such, there are many differing ideas of what an intelligence product and correspond-

ing information model should look like. Our approach proposes a single method for

creating information models thereby limiting the possibility of misunderstanding the

intelligence analysts intent.

2.1.6 Entity Relationship Diagram (ERD). A major flaw with the SAVANT

program is the inability of intelligence analysts to format their knowledge into a form

that is easily translatable into an ERD. An ERD is another example of an informa-

tion model. As one would expect from the name, the ERD models the relationships

between the various entities in a database. Database modelers and database admin-

istrators use ERDs to accurately display the design and structure of their databases.

The basic ERD consists of three types of objects: entities, relationships, and

attributes [9].

• Entities represent the central objects that information is being collected about.

An entity can typically be thought of as the subject of a sentence and thus can

be expressed by a noun.

• Relationships represent real-world associations among one or more entities.

The relationships commonly refer to the connectivity between entities; that

is, whether the relationship is one-to-one, one-to-many, or many-to-many.

• Attributes describe the characteristics of the entities. Just as entities can be

expressed as nouns, the attributes can be thought of in terms of adjectives. If
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the simple concept map in Figure 2.1 is represented an ERD, “sky” would be

an entity while “blue” would be an attribute of the “sky” entity.

2.2 Prior Work

This section will discuss prior attempts by NASIC to find a more efficient ap-

proach to KPS information map creation.

2.2.1 Attempts at a Standard Information Model. Recognizing the need for a

standard information model for KPS to be shared throughout NASIC, there have been

several attempts to create a model that would be used across the different directorates.

To assist in this process, NASIC has hired representatives from Northrop Grumman

who understand the ERD concept. However, different teams of contractors were

assigned to each directorate and, due to poor communication between these teams,

stove pipe systems have begun to appear exacerbating the problem that Northrop

Grumman was employed to correct.

2.2.2 Model Creation Tools. In addition to our proposed use of CmapTools,

NASIC’s planning branch has tested several other modeling applications. Each of

these tools were discarded for the reasons detailed below:

• Visual Thought: Visual Thought is a diagramming and flow chart tool made by

Confluent. It is able to be used across platforms and is very flexible. However,

contractor intervention is necessary to convert the Visual Thought models into

files usable by KPS and at a price of $950 per license, this method is cost

prohibitive.

• Microsoft Visio: Visio was less expensive than Visual Thought, but also more

restrictive. It is intended for use on a PC, and although it does support cus-

tomization, it is not a simple process. Again, it also required a contractor for file

conversion. This method was deemed unusable as NASIC planners do not be-

lieve that intelligence analysts will like the cumbersome nature of the required
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Visio customization. Additionally, they are attempting to move beyond the

need to use contractors for file conversion.

• Microsoft PowerPoint: As PowerPoint is intended to build presentations, it does

not include the necessary customization options needed in order to accurate

represent a information model of this complexity. The lone reason it was used

was cost as NASIC current holds a site license for the software. Also, as be-

fore, it required a contractor to convert the final model into KPS usable files.

PowerPoint was discarded after a very brief trial as it was apparent that this

application was not intended to produce intelligence information models.
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III. Tool Use

This chapter describes the proposed approach to be used to move information

from the mind of the intelligence analysts into text files used by the database

modeler to populate the database. This approach can be divided into three steps:

1. Creation of the concept map.

2. Exportation of the concept map to XML.

3. Execution of CMap Conversion for KPS to create KPS text files.

3.1 Concept Map Creation

Creating an accurate, complete, correctly-stylized concept map is the most im-

portant step in this approach. Unless care is taken in the creation of the concept map,

the intent of the intelligence analyst will not be correctly transferred by the remain-

ing steps effectively rendering the entire approach useless. Various keywords are used

throughout concept map creation and are looked for by the remaining steps of the

approach so spelling and correct usage is imperative. This portion will be completed

entirely within the CmapTools application.

3.1.1 Create new Concept Map. From the menu, select File, then New CMap.

3.1.2 Create new Concept. Double-click in the middle of the Untitled canvas

to create a new concept. A new concept will appear at your cursor position.

Next, double-click inside the new concept to edit the text and name the con-

cept. This concept represents one of the main ideas you are attempting to document.

All main ideas and attributes must have a note detailing a concise description of

the concept. For example, a main idea concept named Fixed-Wing Aircraft (FWA)

Performance Data Set would be described with the following text: “This is the top-

level entity of the Fixed Wing Aircraft Performance model that provides the general

performance details.”
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Figure 3.1: Notes and Comments on a Concept

To add a note, place the mouse cursor over the concept and right-click. In the

ensuing menu, select Add Info.

The dialog box that appears has two separate text entry portions. The box

labeled Mouse Over Info is used for the note. Enter your note here and select the OK

button.

There is also a text entry box labeled Hidden Info. This space can hold any

additional comments about the concept that are above and beyond the scope of the

note. Figure 3.1 shows an example where both of these spaces have been filled in.

3.1.3 Create a Concept Attribute. The next step is to create all the nec-

essary descriptive concepts or attributes. Each main idea in the concept map will

be described further by child concepts. The following details the creation of these

attributes. Repeat the following steps as necessary to create all needed attributes.
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Just as with the main idea concepts, all attributes need to have a note detailing

a description of the attribute. As an example, one attribute for the FWA Performance

Data Set is Total Load Fuel Weight. Its describing note could read: “The weight of

the total fuel load for the particular configuration.”

Perform the following steps to create a link and an attribute:

1. Position the cursor on top of the recently created concept with the mouse pointer

on the two diagonally downward facing arrows as seen in Figure 3.2 and hold

down the left mouse button.

2. While continuing to press the left mouse button, drag the cursor to an empty

spot on the canvas. A directed arc will appear as shown in Figure 3.3.

3. When you are satisfied with the length of your arc, release the left mouse button.

A new concept and link will appear as shown in Figure 3.4.

4. Double-click in the box located on the arc. This names the relationship between

the two concepts. All direct links from a main idea concept must be named with

the keyword shows, as in Figure 3.5. Finally, the attribute can be then named

by double-clicking on the concept.

3.1.4 Create Attribute Descriptors. Details about the attributes must now

be captured. To describe the attributes, new concepts need to be created. These

concepts are known as attribute descriptors. Select the attribute you wish to add a

descriptor for with the mouse pointer. Position your cursor on top of the downward

pointing diagonal arrows and drag the cursor to the position where you would like

your descriptor to be located. This will create a link from the attribute to a new

concept which will be used as the descriptor. Links and concepts can then be named

by double-clicking on them.

In order to determine what descriptors to use for each attribute, several ques-

tions must first be answered about the attribute:
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Figure 3.2: Creating link to new Concept

Figure 3.3: Creating link to new Concept, Directed Arc

Figure 3.4: Creating link to new Concept, new Concept and link

Figure 3.5: Creating link to new Concept, Using keyword shows
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• Is it a required portion of the main idea? This question must be answered by

the concept map so the database modeler can force the database to require this

attribute as well.

• Is it unique for every instance of the main idea? If so, this needs to be identified

on the concept map so the database modeler can make use of this attribute as

a key in the database table.

• What data type is it? For instance, is it a STRING of text or an INTEGER? As

a matter of convention, this question should be answered in all capital letters.

This is for database informational purposes, as specific data types can require

special consideration in the database.

• How many digits or letters are required to display it correctly? As with the data

type, this information is needed by the database modeler to ensure the data is

stored correctly.

• Is it measurable, and if so, what are the units of measure? If the attribute is

measurable, KPS requires the units of measure; therefore this must be shown

on the concept map.

Each of these questions will be answered by the attributes descriptor concepts.

In Figure 3.6, you can see that attribute1 has been labeled as one that must exist.

Likewise, attribute2 is of the INTEGER data type and will hold up to 10 digits.

Any, or all, of the descriptors can be used on any attribute. Attribute3 is unique,

is measured in kilograms, and is a REAL NUMBER. Note that the data type for

attribute3 does not include a value for the number of digits. If a value is not specified,

a default of 16 digits is assumed.

3.1.5 Linking Keywords. To enable tool supported conversion of the concept

map into KPS, we are limiting the scope of the CmapTools application for use by

NASIC. Therefore it is necessary to only use specific keywords when naming linking

phrases. The following details these keywords.
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Figure 3.6: Creating attribute descriptors

• shows: The keyword shows was selected as the linking phrase to be used between

an entity and its various attributes. Intelligence analysts think in terms of

intelligence products and reports so following that line of thinking, each main

idea in a concept map would correspond to a section in an intelligence report.

Using the keyword shows allows intelligence analysts to visualize the main idea

as a section heading that shows various describing concepts about itself. As the

semantics of the concept map cannot be checked until the database modeler

runs the CMap Conversion for KPS tool any other keyword that attempts to

connect a main idea to an attribute will cause that keyword and attribute to be

ignored during the conversion process.

The next set of keywords are used to further define the attributes of the concept

map.

• has basename: The keyword phrase has basename is used when a main idea can

be referenced by a smaller amount of text. For example, the entity Christopher

Coryell could have a basename of Coryell.
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• has rolename: The keyword phrase has rolename is used when it is desirable to

categorize the main idea so that ideas in this subcategory can easily be found in

the database at a later date. As an example, the main idea Christopher Coryell

could have a rolename of AFIT Student.

• is a: The keyword phrase is a is used to denote the data type of the attribute.

It connects the attribute to a concept detailing both the data type and the

number of digits of that data type it takes to reference the attribute. Continuing

our example, the basename Coryell would be connected to a concept named

STRING:7 with this keyword phrase. By convention, the data type is in all

capital letters and is followed by a semicolon and an integer denoting the size

of the data type, in this case seven letters.

• is: The keyword is is used to specify an attribute that is unique in every instance

of a main idea. It must be connected to a concept named unique. This is used

to determine whether or not this attribute can be used in the database as either

a primary or foreign key.

• must: The keyword must is used to specify an attribute that must be present

in all instances of the main idea. It is required to be connected to a concept

named exist.

• measured in: The keyword phrase measured in is used when the attribute is

measurable. It is connected to a concept that denotes the unit of measure. In

our example, if the main idea Christopher Coryell had an attribute named height,

the height attribute would be connected via this keyword phrase to a concept

named inches.

The final two keywords are used to define relationships between main ideas.

• has: The has keyword is used to reflect a one-to-one relationship between main

ideas. This means that only one instance of each main idea can be connected

to the other. The main idea Christopher Coryell could be connected to a main

idea of Spouse using this keyword.
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Table 3.1: Linking Keywords
Keyword Description

shows Connects attributes to a main concept
has basename Connects an attribute to a concept detailing a nickname for that at-

tribute
has rolename Connects an attribute to a concept used to categorize the attribute
is a Connects an attribute to a describing data type
is Connects an attribute to a concept named unique when that attribute

is unique to that main concept
must Connects an attribute to a concept named exist when that attribute

must exist
measured in Connects an attribute to a concept named as the unit of measured; for

example, a height attribute would be connected to an inches concept
by this linking phrase.

has Connects two enclosed main concepts when one idea is related to only
one of the other

has many Connects two enclosed main concepts when one concept can be related
to many other instances of the second

• has many: The has many keyword phrase is used in a similar manner. It reflects

a one-to-many relationship. One idea can contain many instances of the other.

Once again using the main idea Christopher Coryell, this keyword could be used

to connect to a main idea named Children.

An overview of the keywords can be found in Table 3.1. At this time, these are

the only keywords allowed. Any other keywords between main ideas are not accepted

and an error will be thrown by the CMap Conversion for KPS tool during conversion

if this occurs. If additional keywords become necessary, modifications to the CMap

Conversion for KPS tool will have to be accomplished to correctly convert the new

keywords and their associated concepts for KPS.

3.1.6 Enclose Main Idea. The finishing step to complete the creation of the

main idea is to enclose the main idea with its attributes. This step allows the concept

map to hold a great deal of information without overloading anyone who wishes to

view your concept map.
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Figure 3.7: Enclosing Main Idea, Enclosure example

The following details the enclosing process:

1. Place your mouse cursor at any of the top or bottom corners of your concept

map.

2. Holding down the left mouse button and dragging the cursor towards the main

idea content creates a dashed-line box. Continue to drag the cursor until your

entire main idea is inside the box.

3. Place your mouse cursor on any part of the selected main idea. Right-click the

mouse to bring up the menu. On the menu, select Nested Node, then Create. In

Figure 3.7 an example of a nested node is shown.

4. The final step to enclose the main idea is to name the enclosure. The enclosure

must have the exact same name as the main idea. To name the enclosure, select

the two leftward pointing arrows on the right side of the enclosure as seen in

Figure 3.7. This minimizes the enclosure. It can then be named by selecting it

with your left mouse button and typing the name. A correctly named enclosure

for Figure 3.7 will also be named Main Idea 1.
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Figure 3.8: FWA concept map example

3.1.7 Connect Main Ideas. The final step in the creation of a concept map

is to tie the main ideas together. In most CMaps, there will be a theme tying the

main ideas together. As seen in Figure 3.8, the FWA Performance Data Set, which

is an enclosed main idea, is linked to three other main ideas. Each instance of the

FWA Performance Data Set can be linked to by many instances of Combat Data, At

Altitude Data and Cruise Data so they are linked by the keywords has many. These

links are created much the same as the links between unenclosed concepts are. First,

create all necessary enclosed main ideas. Then select the main idea that will be used

as the main theme of the concept map. Position the mouse cursor over the diagonally

downward arrows. Hold the left mouse button and drag the directed arc to one of the

other main idea concepts. In the new link, use the keywords has if each main theme

is linked to one, and only one, of the main idea or the keywords has many if the main

theme can be linked to more than one main idea.

When you are satisfied that you have captured all your data on the concept map,

save the concept map (select File — Save CMap) and proceed to the next section of

this document, Export to XML.
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3.2 Export to XML

The second step of the approach is to export the concept map into a format

that will be readable by the CMap Conversion for KPS Tool, namely CXL a variant of

XML defined in Chapter 2. Fortunately CmapTools has a utility to accomplish this

using the following steps:

1. In the window displaying your completed concept map, select File — Export

CMap As — XML File...

2. In the file selection dialog that appears, ensure that CXL 1.0 Format appears

in the box titled Files of Type. Navigate to the shared directory specified by

NASIC/SC and click the Save button.

Repeat this process until all necessary concept maps have been exported.

3.3 Concept Map Conversion

This final step of the approach will take the XML files generated by the previous

step and create the text files needed by the NASIC database modeler for inclusion of

the Intelligence product in KPS. This section details the use of the CMap Conversion

for KPS tool.

1. First, click the Browse button to the right of the Import File text box.

2. In the dialog that appears, navigate to the concept map XML file repository

specified by NASIC/SC and select the appropriate file, then click open.

The absolute file path will be shown in the Import File text box.

3. In the same manner, select the appropriate directory for the four output files.

Select the Browse button to the right of the Output Directory text box. Select

the correct directory and click the Open button.

! Note, when selecting the directory it is imperative that you have
only selected the directory and not entered the directory. If you enter the
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Entity Name#UDP Sequence Within Model#Attribute Name#Attribute ...

Cruise Data - 11km#8#Cruise Mach#Cruise Mach# Cruise Mach#RE ...

Plots#4#Maximum Rate of Climb#Maximum Rate of Climb#Maximum R ...

Combat Data#6#Performance Designator#Performance Designator#P ...

Report Tables#1#Configuration Designator#Configuration Desgina ...

Figure 3.9: Elided contents of an example attribute report.txt file.

directory, you’ll receive a error message noting that the path you have
selected is not a Directory. If you receive this error, select OK to return
to the main screen, then ensure that you select the directory via a single
click and then click Open as opposed to entering the directory via the
double click.

4. After both the Import File and the Output Directory have been correctly set,

either click the Import button or select File — Import from the File menu. The

tool will begin to import the concept map.

! All Entities and Attributes are required to have definitions. Due
to the fact that CmapTools is a third party vendor application we were
unable to force the intelligence analysts to comply with this requirement.
Therefore this is checked at this time. Any missing definitions will trigger
a dialog informing you of this. If this occurs enter in your choice of text
and note the Entity or Attribute name so a definition can be retrieved
from the analyst at a later time. This definition will then need to be
manually updated in the output file.

Additionally, relationships between Entities must be either One-to-Zero-
One-or-More or One-to-Zero-or-One. If the analyst did not correctly
identify the relationship on the concept map (using the has or has many
keywords) a different dialog will appear. Enter in the correct relationship
and select OK.

A message denoting successful completion will appear when the tool has finished

parsing the document.

At this point, the concept map data has been converted into the four text

files (attribute report.txt, entity report.txt, domain report.txt and relationship

report.txt) needed by the database modeler for use by KPS. These files have

been generated in the directory selected earlier in this process.
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An example of this output is shown in Figure 3.9. The length of the text in

the example has been cut off for presentation on the printed page; each line

displayed here only shows about one quarter of the total text on that line in the

actual file.
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IV. Tool Engineering

This chapter describes the design and engineering decisions for the CMap Con-

version for KPS tool.

4.1 Cmap Conversion for KPS

The diagram shown in Figure 4.1 details how the tool moves the data. The data

is read in from the XML file created from CmapTools. The code in the ParseFile class

then parses the XML code and creates the necessary CmapElements. These elements

are passed to the Report class which creates the necessary NASIC ERD elements as

required for each of the four text files. Finally, the FileOut class creates the text files

from the information given to it by the Report subclasses.

The calls between the classes can be seen in Figure 4.2. Following this sequence,

the database modeler opens the CMap Conversion for KPS tool via the UI Start class.

After the database modeler enters necessary information, a JButton on the UI is

clicked and a new ParseFile is created. After the ParseFile class has finished separating

the XML file into CmapElements, it creates a new FileOut object. This FileOut object

then creates four reports in turn to complete the necessary text files.

4.1.1 Package Design. During the design of the tool, it was determined that

there were three separate operations that this tool would need to accomplish.

1. Provide a graphical user interface for the user.

NASIC ERD ElementsCMapElementsXML File KPS Text Files

ParseFile Class Report subclasses FileOut Class

Figure 4.1: Data pathway through CMap Conversion for KPS
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UI_Start

ParseFile FileOut

Report

createReport

createReport

createReport

createReport

new FileOut

new ParseFile

Start Program

Figure 4.2: Sequence diagram of CMap Conversion for KPS tool
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2. Parse the XML file provided by CmapTools into Java Objects representing that

same information model.

3. Manipulate files to read input and write output.

With that being the case, we decided to split the source code into three packages;

src.ui, src.parse and src.fileOperations.

The src.ui package handles the user interface and is comprised of the UI Start

class.

The src.parse package handles the parsing of the XML file. The main package

contains the ParseFile class. Additionally, it contains a sub-package, src.parse.cmapElements.

This sub-package contains all the classes necessary to create Java objects representing

the various elements of a concept map.

The src.fileOperations package handles the internal creation of the output files

as well as the actual writing of the files to disk. The main package contains the FileOut

class. This class runs the fileOperations show. It contains the source code to create the

output files. This package contains two sub-packages; src.fileOperations.outputFiles

and src.fileOperations.fileFilters. The outputFiles sub-package contains the Report

class and the four children representing the four different output files. The fileFilters

sub-package contains two classes used by the UI Start class to filter files during input

and output file selection.

An overarching class diagram for our code is shown in Figure 4.3.

4.1.2 CMap Elements. As mentioned above, the ParseFile class breaks down

the XML document and creates various CmapElement objects. This subsection will

describe these elements in more detail. The CmapElement Class and its subclasses

can be seen in the Class diagram in Figure 4.4.

CmapElements are the various pieces that the CmapTools application breaks

down into. They are propositions, resources, connections, concepts and linking phrases.

The Proposition and Resource classes were created for future work as this iteration
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UI_Start ParseFile-Has One

1

1

1

-Creates One

1CMapElement

1

-Creates many0..*

CMapMajorElement

ConceptLinkingPhraseConnectionResource

Proposition

Report

AttributeReport EntityReport DomainReport

RelationshipReport

1

-Creates Many*

FileOut

Figure 4.3: Class diagram of entire application, Class names only
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+<<constructor>>CMapElement()

+getParent() : CMapElement

+getParentID() : String

+setParent() : void

+setParentID(in parentID : String, in parent : CMapElement) : void

-parent : CMapElement

-parentID : String

CMapElement

+addConnection() : Connection

-label : String

-id : String

-shortComment : String

-connections : ArrayList<Connection>

-longComment : String

CMapMajorElement

+toString() : String

+getUdpSeq() : int

+setUdpSeq(in udp : int) : void

-udpSeq : int = 0

Concept

+toString() : String

LinkingPhrase

+toString() : String

+getBidirectional() : boolean

+setBidirectional(in isBidirectional : boolean) : void

+getFromElement() : CMapMajorElement

+getToElement() : CMapMajorElement

+getParentElement() : CMapMajorElement

-isBidirectional : boolean = false

-fromElement : CMapMajorElement

-toElement : CMapMajorElement

-parentElement : CMapMajorElement

Connection

+toString() : String

-description : String

-name : String

-mimetype : String

-server_id : String

-folder_id : String

-linked_id : String

-url : String

-focus_entity_id : String

Resource

+<<constructor>>Proposition(in one : Connection, in two : Connection)

+getFrom() : Connection

+getTo() : Connection

-from : Connection

-to : Connection

Proposition

Figure 4.4: Class diagram of CmapElements
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of CMap Conversion for KPS does not use this utility of CmapTools. The portion of

code that is interesting for us are the other three elements.

• Concept – The first class that we will discuss is the Concept class. Any concept

created in a concept map through CmapTools will become an object of this class;

meaning that ninety percent of what is shown on a concept map becomes one

of these objects. The decision on whether the concept refers to a main idea or

an attribute is made during the report creation process.

• LinkingPhrase – This class is made up of objects created to represent each of

the links that are between concepts on the map. This object is very similar to

a Concept object in code, requiring only a different toString implementation.

• Connection – This class represents the connection between CmapMajorEle-

ments. Each connection between a Concept and LinkingPhrase is its own Java

object. During the report creation process, these connections have to be trans-

versed to determine which NASIC entities each Concept object will become.

4.1.2.1 XML Parsing Strategy. Since XML parsing was necessary for

this effort, a strategy needed to be selected. The strategy selected is known as SAX.

The Simple API for XML(SAX) works incrementally and only parses the portions

of the XML document as needed [10]. SAX requires much less memory than other

parsing strategies, however any modifications to the structure of the XML document

cannot be accomplished in memory as the entire document is not loaded initially.

Required changes to the XML document would have to be accomplished manually

and then the document would have to be re-parsed. For our purposes, no changes are

made to the XML document so this disadvantage can be ignored.

To implement a SAX parser, we looked at three different APIs; Xerces, JAXP,

and JDOM.
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Xerces, an open source XML parser from Apache, was the first parser we looked

at, but integrating it into our project was not easily understood so this option was

discarded fairly quickly.

Next JAXP, Sun Microsystem’s Java XML parser, was researched but the API

was very difficult to understand and we were unable to achieve success using these

methods.

Finally, we found an example of JDOM, another open source project created by

Jason Hunter, a technologist at Mark Logic Corporation. This library allows XML in

a document to be treated much like a Java collection. We were able to open the XML

objects created in a debugger and determine how the parsing worked, and customizing

it for our purposes followed.

4.1.3 Reports. Each of the four output files are created by an associated

Report subclass. As can be seen in the Class Diagram (Figure 4.5), each class parses

the CmapElements passed in via the constructor parameter parseFile. Each subclass

looks for particular characteristics in each CmapElement to determine the elements

needed for its output. Each then creates a StringBuilder object for each line of

information for the output files. This StringBuilder object is added to the superclasses

FileAsStrings (an ArrayList of Strings) to be passed back to the FileOut class for the

text files to be written out to disk.

4.1.4 Database Creation. The four output text files our tool creates map to

the four tables of our new database. Therefore, each time a concept map is converted,

the new database will have a table of entities, a table of attributes, a table of the

domains, and a table of relationships.

When a concept map is parsed, it is first broken up into the various CmapEle-

ments (concepts, linking phrases, and connections) mentioned previously in this docu-

ment. Next, an iteration is run to create each of the four tables. Each of the concepts

are first visited to determine whether or not they refer to an entity in the database.
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+<<abstract>>getFileName() : String

+getFileAsStrings() : ArrayList<String>

-fileName

-fileAsStrings

Report

+<<constructor>>AttributeReport(in parsedFile : ParseFile)

-determineAttributeIndex(in concept) : int

-determineEntity(in concept) : Concept

-determineType(in concept) : void

-getAttributes() : ArrayList<Concept>

+getFileName() : String

-TITLE_LINE

-entityName

-seqInModel

-attBaseName

-attRoleName

-domName

-attDef

-attNote

-attMeasure

-attPrimaryKey

-attForeignKey

-attOptional

-udpMax

-SEPARATOR

-f_parsedFile

-isDomain

-isAttName

-isAttBase

-isAttRole

-isUnique

-isOptional

-isMeasure

AttributeReport

+<<constructor>>EntityReport(in parsedFile : ParseFile)

-getEntities(in parsedFile : ParseFile) : ArrayList<Concept>

+getFileName() : String

-TITLE_LINE : String

-entDef : ArrayList<String>

-entName : ArrayList<String>

-entNote : ArrayList<String>

-udpSeq : ArrayList<String>

EntityReport

+<<constructor>>DomainReport(in parsedFile : ParseFile)

+getFileName() : String

-populateDomainList() : void

-TITLE_LINE : String

-domains : ArrayList<Concept>

-f_parsedFile : ParseFile

-SEPARATOR : String

DomainReport

+<<constructor>>DomainReport(in parsedFile : ParseFile)

+getFileName() : String

-populateDomainList() : void

-TITLE_LINE : String

-relType : ArrayList<String>

-SEPARATOR : String

-relCard : ArrayList<String>

-udpSysCode : ArrayList<String>

-childEntity : ArrayList<String>

-childUDP : ArrayList<String>

-parentEntity : ArrayList<String>

-parentUDP : ArrayList<String>

-links : ArrayList<String>

-o2m : String

-o2o : String

RelationshipReport

Figure 4.5: Class diagram of Report and its subclasses
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An entity is created when a concept is found that has no incoming edges. At-

tributes are then determined by the linking phrase coming out of the entities. Each

concept connected to an entity by the linking phrase shows creates a new row in the

attribute table. This row will then be populated by the concepts connected to the

attribute.

To create the domain table, all instances of the linking phrase is a are found.

The concept this linking phrase is connected to is part of the domain of this database.

Care is taken to ensure that there are no duplicate entries in the domain table.

The final table that is created is the relationships. Only top level nested concepts

are checked here and they are entered into the table based on the directionality of the

linking phrases between the entities as well as the label of the linking phrase. Each

linking phrase between entities creates a new row in the database.

The following example will be used to illustrate this process. Consider the

concept map shown in Figure 4.6.

The only concepts that do not have an incoming linking phrase are FWA Per-

formance Data Set and Combat Data. These two will become the only entities in the

new entity table. Three columns will be populated in the newly created table by the

conversion process. The first will be the entity names themselves. The second column

is pulled from the definitions of the entities. This is the reasoning behind the require-

ment of adding them during concept map creation. The final column consists of an

identification number created by the sequence in which the concept is visited by the

program. So the FWA Performance Data Set row in the table will consist of the entity

name, FWA Performance Data Set, the entity defintion, This is the top-level entity of

the Fixed Wing Aircraft Performance model that provides the general performance details.

and the identification number, in this case the number 2. Table 4.1 shows the created

table.

The next pass by the tool creates the attribute table. As mentioned above, each

concept whose incoming linking phrase is named shows is selected as an attribute.
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Figure 4.6: Mapping of concept map to database
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Table 4.1: Entity table example based on concept map in Figure 4.6
Entity Name Entity Definition Sequence Within

Model

FWA Performance Data Set This is the top-level entity of the
Fixed Wing Aircraft Performance
model that provides the general
performance details.

2

Combat Data This entity provides performance
data under combat conditions.
Combat Weight is a required at-
tribute and all other attribute val-
ues are dependent on this value.

3

A row will be created for each of the following attributes: System Identifier, Total

Fuel Load Weight, Combat Weight and Performance Designator. The entity that the

attribute is describing is found by following the shows linking phrase back to its

source; in the case of Combat Weight the entity would be Combat Data. As in the

entity table, a identification number is created based on the sequence in which the

conversion tool visits the concept. Other columns created in the attribute table are:

Attribute Basename, Attribute Rolename, Domain Name, Attribute Is PK, Attribute Is FK,

Attribute Definition, Maximum Length, Unit of Measure and Optional. Each of these

is specified using the stylized linking phrases described in Chapter 3. The attribute

table created from Figure 4.6 is seen in Table 4.2. Some fields have been left out of

the table due to space limitations.

The third table created is the domain table. This table consists of the various

data types in use by the concept map. It is entirely populated by concepts that have

an incoming linking phrase of is a. Our example has the three domain types; REAL

NUMBER, STRING and INTEGER.

An example of the final table created, based on the relationships between enti-

ties, is shown in Table 4.3.
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Table 4.2: Attribute table example based on concept map in Figure 4.6
Entity
Name

Sequence
Within
Model

Attribute
Name

Domain
Name

Attribute
Is PK

Maximum
Length

Unit of
Measure

Optional

Combat
Data

3 System
Identifier

INTEGER No 10 n

FWA
Perfor-
mance
Data Set

2 Total Fuel
Load Weight

REAL
NUM-
BER

No 16 kg y

Combat
Data

3 Combat
Weight

REAL
NUM-
BER

No 16 kg y

FWA
Perfor-
mance
Data Set

2 Performance
Designator

STRING Yes 200 n

Table 4.3: Entity table example based on concept map in Figure 4.6
Relationship Cardinality Child Entity

Name
Sequence
Within
Model

Parent Entity Name Sequence
Within
Model

One-to-Zero-One-or-More Combat Data 3 FWA Performance
Data Set

2
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V. Validation

To validate our claim that our proposed approach is more efficient than the

approach in use at NASIC today, we performed a case study using a data set

provided by NASIC. Our approach reduced the total time required to create the

information model and prepare the text files for importation to the database 89%

(down from 40 hours to 4 hours). Additionally, by removing the need for a contractor,

our approach has the potential to significantly lower the cost for creation of the

information model from $350K to less than $150K according to NASIC estimations.

The following were the steps taken during our validating case study:

• We received a data set from NASIC; this set corresponds to the knowledge of

the intelligence analyst.

• We created a concept map using the data set through CmapTools.

• CMap Conversion for KPS was used to translate the XML produced via Cmap-

Tools into KPS text files.

5.1 Data

The example case study is based upon a need for intelligence data on the perfor-

mance of fixed-wing aircraft (FWA). There are many ideas that need to be conveyed

to accurately describe the performance of a FWA. Details of thrust-to-weight ratio,

turn and climb rates, and maximum velocity need to be covered. How the aircraft

performs in combat must be shown. In addition, the range and mission types for the

aircraft are important. All in all, we determined 171 different attributes of a FWA

that need to be included in an KPS information model to accurately describe the

performance of one FWA.

5.2 Concept Map Creation

Following the steps described in Chapter 3 (creating main ideas, linking them

to attributes, enclosing the main ideas and linking main ideas to one another), a full
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Figure 5.1: Complete FWA Concept Map

concept map for the FWA Performance Data Set was created. The map we created is

shown in Figure 5.1. The Range-Radius Data attribute has been expanded to show

the full detail of each of the concepts seen in the map. It took 4 hours and 20 minutes

to complete the FWA concept map using CmapTools. We believe this duration to be

representative of what an intelligence analyst who has been trained to use CmapTools

would require to create a similar map.

At this point in the current approach the intelligence analyst would either be in

one of the second activities, labeled Analyst explains product information to database
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modeler in Figure 1.1 (on page 3), or waiting on the availability of the database

modeler. If the database modeler was unavailable and a contractor was hired this

would add an average of $100K to the cost of production.

5.3 Concept Map Conversion

The final step of the approach is to use the CMap Conversion for KPS tool to

convert the concept map created XML into text files. This conversion process was run

five separate times. A stopwatch was started after the tool was open, but prior to any

operations being performed. The times were 7.8 seconds, 7.1 seconds, 7.8 seconds,

6.8 seconds and 7.3 seconds. These average out to 7.36 seconds to convert the XML

files into the necessary text files with the majority of the time spent on navigating

the dialog boxes to the location of the XML files. This time spent is negligible when

compared with the time it takes to create these text files manually.

At this point, CSIM has resulted in a complete product and is entering the

final state in Figure 1.1, Database modeler runs script importing text files to Oracle. 4

hours and 20 minutes into the current approach the intelligence analyst would still be

meeting with either the database modeler or the contractor with more than thirty five

hours until completion. In all, the CSIM approach was 89% faster as it took 4 hours

and 20 minutes as opposed to 40 hours while retaining only 42% of the estimated

current cost.

5.4 Threats to Validity

In this section we discuss three threats to the validity of our case study. First,

we have assumed that an intelligence analyst is able to create a concept map using

CmapTools in approximately the same amount of time as we needed. However, we

were unable to verify this with using a NASIC intelligence analyst because, due to

scheduling conflicts, the intelligence analyst assigned to work with us was unable to

collaborate during this case study.
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Second, we have only validated our approach with a single set of test data. It

is possible that further real-world intelligence data would be of greater complexity

and thus require more time and effort to capture in a concept map or, even worse,

not be possible to express in a concept map that our CMap Conversion for KPS tool

can automatically convert into a format usable by KPS. However, NASIC has told us

that the test data set is of similar complexity to their real-world data.

Third, we were unable to access the actual time-cost of missing information

in the intelligence analyst concept maps. With the concept map created as part of

our FWA case study, there was no need for the database modeler to correct errors

in the map. In real-world CSIM use, there will be maps that require clarification

from the intelligence analyst. It is not possible to determine what the time-cost of

these clarifications will be due to unknown variables. However, as we note in the next

chapter, further integration of CmapTools and CMap Conversion for KPS will help

reduce the likelihood of this type error being made by an analyst.
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VI. Conclusion

Ensuring that intelligence data is correctly and efficiently recorded and docu-

mented in a manner understandable to customers is an ongoing challenge. Due

to its expediency and cost savings, the CSIM process for creating KPS information

models proposed by this thesis is an improvement over NASIC’s current approach.

6.1 Summary of Contributions

This thesis proposes a new tool-supported approach called CMap Supported In-

formation Modeling (CSIM) for NASIC intelligence analysts to create KPS informa-

tion models. CSIM empowers the intelligence analysts to create information models

with a reduced need for a database modeler or contractor support. The technical

contributions of our work are:

• Development of a stylized concept map that allows an intelligence analyst to

systematically specify a new KPS intelligence product. While the concept map

tool, CmapTools, was developed by prior work [3], the specification of the linking

keywords which allow concept maps to be used with KPS is novel.

• Development of the CMap Conversion for KPS tool. A tool to convert our stylized

concept map into the text files required by KPS.

• Documentation of our proposed tool-supported approach. We believe this doc-

umentation to be critical in the case that CSIM is adopted by NASIC.

6.1.1 Validating Case Study. To validate our claim that our proposed ap-

proach is more efficient than the approach in use at NASIC today, we applied the

NIMC process to a representative case study, the fixed wing aircraft performance

data set, and were able to show a 89% percent decrease in time while also lower-

ing the estimated cost for individual information models by roughly $200K. If the

real world gains are similar to these, NASIC could achieve significant cost savings by

adopting CSIM.
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6.2 Looking Ahead

A limitation of our approach is the inability to check that concept maps follow

our linking keywords as they are created by the intelligence analyst. We currently find

any keyword errors when the database modeler runs our CMap Conversion for KPS

tool. This late detection of keyword problems can necessitate further communication

with the concept map creator to finish the model. This flaw is unavoidable in the

current implementation as CmapTools does not allow customization of the tool.

However, via NASIC’s ongoing relationship with IHMC (the creator of Cmap-

Tools), it should be possible to integrate CMap Conversion for KPS as an add-on to

CmapTools. This would allow for upfront error checking of the information model.

Finally, an additional capability that would be extremely beneficial would be to

have CMap Conversion for KPS interface directly with the KPS database through either

Java Database Connectivity [8] or Enterprise Java Beans [1]. This would remove the

need to generate text files and import them into the database using scripts. In order

to support this, a pictorial representation of the database elements should be shown

to the database modeler prior to inclusion into the database for their approval.

A direct link between the CmapTools program and the KPS database could

also be used to modify concept maps using data from the database. To support

this capability, a “reverse” CMap Conversion for KPS tool would have to be written.

However, the benefit would be that one tool could be used for for both creating new

KPS information models as well as modifying them.
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3. Cañas, A.J., G. Hill, R. Carff, N. Suri, J. Lott, T. Eskridge, G. Gómez, M. Arroyo,
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